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HEAT TRANSFER AND DIFFUSION TN WEDGE FLOWS WITH 

RAPID MASS TRANSFER 
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.~bst~ct-Boundary-laker solutions are given for the flow of binary constant-property mixtures over 
planes and wedges, with heat and mass transfer through the boundary surface. Exact numerical 
solutions are given for Prandtl and Schmidt numbers from 0.1 to 10. Asymptotic solutions are given 
for Prandtl and Schmidt numbers outside this range, and also for high rates of mass transfer toward 

the surface. 

NOMENCLATURE 

Symbols used more than once arc listed below. 
Dimensions are given in terms of mass (M), 
length (L), time (t), and temperature (T). Any 
consistent units may be used. 

Specific heat of the mixture; 
(~~z~-~)~-l~-l: 
binary di~usivity, L”f-‘; 

Do, D,, 

F, G, H, 

G,> G,, Gs, 

I,, I,, etc., 

J.Z, 

K. 

K,. . 

A’..1 cl. 

layer displacement parameter, 
dimensionless; 
dimensionless coefficients in 
equation (39) and Table 2; 
dimensionless coefficients in 
equation (50) and Table 2; 
dimensionless quantities defined 
in equation (43); 
integrals in equations (44, 45) 
and Table 3 ; 
P?A, - XAO(&‘A~ + NB& diffu- 
sion flux of species A into the 
boundary layer at y = 0 in a 
two-component system, moles 
L-2t-1; 

dimensionless mass-transfer rate 
defined in equation (I 1); 
dimensionless mass-transfer rate 
defined in equation (43); 
total flux of species n into the 
boundary fayer at 4’ = 0, re- 

ferred to stationary co-ordinates, 
molcc I -2t -l. d_+ , 

PI 
1 

= Cpp/k, Prandtl number; 
Rv, RT, RAB, dimensionless flux ratios. See 

equations (29, 30, 31); 
SC = p/f&A& Schmidt number for a 

binary mixture; 
T. temperature; 
u = U(x), potential flow velocity at 

the edge of the boundary layer, 
L-I-1; 

c, molar density of the fluid, 
moles L-3; 
/ ? \ -1 0 

c J-,li 

(udy - cds), 

f’“(O) 

f*, 

/I., 

k* L) 

k, 

.Io,o - ‘. 
dimensionless stream function; 
= .,f”(O, is, 0, dimensionless 
velocity gradient at the wall; 
momentum-transfer coeficient, 
dimensionless. See equation 
Gil; 
heat-transfer coefficient, 
(JI~L~~-~)L-~~-~T-~ see equation 
(22); 
diffusional transfer coefficient or 
“mass transfer coefficient,” 
moles Ld2t-* (mole fraction)-‘. 
See equation (23); 
thermal conductivity of the fluid, 
(MLgf-“)L-‘I-‘T-1; 
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exponent in equation (I). dimen- 
sionless; 
conductive heat flux into the 
boundary layer at y = 0, 
(M_L2t-2)L--W; 
velocity components in x and y 
directions in constant-property 
fluid, U-l; 
value of U at x = 1; 
dummy variable in equations 
(42) and (44) ; 
distance downstream from the 
leading edge or stagnation point, 
L; 
mole fractions in a binary 
mixture ; 
distance into the fluid, measured 
normal to the wall, t. 

Prandtl or Schmidt number, 
dimensionless. 

4 iT = Pt., A,, ::I< &SC ; 

dimensionless temperature or 
composition : 
Ii% = (T - T,)/( Tee -- 7-o), 
fl4B = @A -- ~AO)/(-&lo, - &tO); 

Wo, it3, K A>, dimensionless 
gradient of temperature or com- 
position at the wall; 

= klp&, thermal diffusivity, 
L‘2-1' 

3 

= 2m/(nz + l), angle parameter 
illustrated in Fig. I ; 

-- 11 (1 - $1 dy,- boundary-layer 

&spiaceme& thickness, L ; 
total displacement distance for 
streamlines in the adjacent 
potential flow, L, see equation 
(40) ; 
dimensionless position co- 
ordinate, see equation (12); 
viscosity of the fluid, ML-It-l; 

‘:: : p/p, kinematic viscosity of the 
fluid, Lzfdl; 
3.14159. f .; 
density of the fluid, ML--“; 
wall shear stress, (MLt-Z)L-“. 

Superscripts 

* 

::: 

l 
. 

Subscripts 
0. 
% . 

A or B, 

Functions 

erf (ffj 

= d/dq; 
denotes a flux relative to the 
molar average velocity of the 
mixture; 
denotes a conventional displace- 
ment thickness; 
denotes a transfer coeficient 
evaluated at the prevailing mass 
transfer conditions. 

evaluated at ? = 0; 
evaluated at 7 = ‘13 (except for 
K%, which appears in an asymp- 
totic solution for A -L co): 
evaluated for species A or B in a 
binary mixture. 

= 

WHEN rapid mass transfer occurs through an 
interface or porous surface, the usual condition 
of zero velocity at the surface does not apply. 
Instead, one or more chemical species flow 
through the surface, and these flows lead to a 
variety of effects. In particular, the transfer co- 
efficients, the stability of laminar flow, and the 
possibility of separation in decelerated flows, all 
depend on the mass transfer rate. These effects 
are exploited in boundary layer control and 
transpiration cooling; they also occur in hetero- 
geneous catalysis, ~omb~lstion and other dif- 
fusional operations. 

Mass transfer is defined here as the transfer of 
one or more chemical species through an inter- 
face or porous wall. Diffusion is defined as the 
motion of two or more chemical species in a 
mixture relative to one another. It should be 
noted that mass transfer is usually accompanied 
by diffusion, but there are important exceptions ; 
for example, the condensation of pure steam 
involves mass transfer but no diffusion. 

The groundwork for an accurate fluid- 
mechanics description of forced-convection 
mass transfer was provided by the work of 
Schlichting and Bussmann [I] and Schaefer 121 
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on velocity profiles around porous-walled 
wedges. More recently, there have been many 
theoretical investigations of mass transfer effects 
in wedge flows; space permits mentioning only a 
few here. 

The first exact boundary-layer calculations 
for heat transfer in the presence of mass transfer 
were made by Eckert [3]; the corresponding 
diffusional problem was first treated by Schuh 
[4]. Transpiration-cooling calculations for air 
with temperature-dependent properties were 
made by Brown and Donoughe IS]. Methods for 
adapting wedge flow mass transfer solutions to 
other geometries were given by Eckert and 
Livingood [6], Spalding [7], and Spaiding and 
Evans [S, 91. The theory of injection cooling of 
porous wedges in high-speed flow, with liquid 
or gaseous coolant, was treated by Hartnett and 
Eckert [IO]. These and other exact solutions for 
wedge flow with mass transfer are published in 
[l-16]. 

The influence of the Prandtl and Schmidt 
numbers (& and ilAn in the present notation) in 
wedge Aows with rapid mass transfer has not 
been adequately studied. Exact solutions are 
known only for n near unity. Asymptotic solu- 
tions are available for large values of _4 [17, 12, 
15, 14, 91 but their accuracy for finite 11 has not 
been adequately tested. The need for additional 
exact solutions has been emphasized recently by 
Spalding and Evans [7, 8, 9, 181, who have also 
discussed possible applications in some detail. 

The purpose of the present work is to provide 
accurate solutions for heat transfer and diffusion 
over the whole range of n (zero to infinity), and 
for various wedge geometries and mass transfer 
rates. With these solutions, practical calculations 
can be made not only for gaseous systems, 
(/1 si 1) but also for molten metals (A << 1) and 
other Newtonian liquids (il + I). 

2. FORMULATION OF THE PROBLEM 

Consider the steady two-dimensional flow of 
a pure or binary fluid as shown in Fig. l(a) or 
X(b). Viscous dissipation and chemical reactions 
in the fluid are neglected. The fluxes of momen- 
tum, heat, and matter at the wall are to be found 
from the constant-property boundary-layer 
equations, 

under the boundary conditions, 

asy+ cc: 

u 3 U(x) = UiX” 

T-tT, 

-uA + X.4~0. 

Aty=O: 

u=o 

T = To 

.YA4 = X& 

1151 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(91 

(101 

r = v*(x) = K J( m+l 
- v l&,x+1 (11) 

2 1 

in which ul, Tm, XA~, To, XAO and K are indepen- 
dent of x. The mass transfer distribution in equa- 
tion (11) was selected to simplify the subsequent 
analysis; it also corresponds to the important 
practical cases of constant NA~/~~ and NAo/NB~ 

along the wall (see Section 3). 
It is well known 19, 10, 161 that the above 

two-dimensional problem can be made one- 
dimensional by introducing the position co- 
ordinate 

and that the velocity field in the boundary layer 
is then determined by the differential equation 

f”’ +s” + /3(1 -f’2) = 0 (13) 

with the boundary conditions 

as y+c/; f’31 Cl41 

at q==O .f’ = 0 (151 

at y==O f=-K. (16) 
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FIG. I. Flow geometries 
(a) Two-dimensional wedge (positive 8) 
(b) Obliquely mounted plate (negative p) with flow 
control on the bottom side. The region of interest is 
above the plate. 

Correspondingly, the temperature and composi- 
tion fields are each determined by a differential 
equation of the form 

~‘1 + Afn~ = 0 (17) 

with the boundary conditions 

as 77-+= II-t 1 (18) 

at 17 =: 0 II = 0. (19) 

Here I7 is a dimensionless temperature or 
composition, and fl is the Prandtl or Schmidt 
number. The analogy between the thermal and 
diffusional problems is evident. 

3. NUMERICAL SOLUTIONS OF THE 
DIFFERENTIAL EQUATIONS 

Solutions of equations (13-19) were computed 
at mass transfer rates from K = - 5 to K = f 3 
and for angles, +, from - n to V. Separation 
conditions were explored in detail, and are 
shown in Fig. 2. The separation boundary joins 
the line /? = 0 smoothly at the “blow-off” con- 
dition K = l-23849142, given by Emmons and 
Leigh [ll]; for K above this value at /? = 0 no 
steady flow solution exists. 

At each combination of /3 and K, the f-profile 

was first computed; this involved a series of trial 
integrations to determine the dimensionless 
velocity gradient at the wall, f”(0). The computed 
,fLprofile was then inserted in equation (17) and 
U-profiles were computed for various values of 
il. 

FIG. 2. Separation conditions in decelerated flow. 
The shaded region includes separated and unsteady 

flows. 

The numerical results for the transfer co- 
efficients and wall fluxes are given in Table I. 
These results include the dimensionless velocity 
gradient at the wall, ,f”(O); the dimensionless 
temperature or concentration gradient at the 
wall, II’(O); and a set of auxiliary quantities R?.. 
RT and RAB which will be discussed presently. 
The values of II’(O) were computed from 

s 
’ /'dyj dn. (20) o’ 

The results are believed correct within 0.5 in the 
last digit, except for f”(0) and /? which are given 
unrounded and may be uncertain by several 
units in the last digit. Asymptotic solutions for 
conditions outside the range of this table are 
given in the next section. 

In compiling Table I a number of values 
obtainable from [l-- 141 have been recalculated. 
In such cases the tabulated values of f*“(O) and 
Ii”(O) have generally shown at least 3-figure 
agreement with earlier work. 

The local transfer coefficients or fluxes at any 
point on the wall can be computed from Table I 
and the relations 



Table 1. Exact solu 

‘4 = 0.1 A = 0.2 A 
Rv n’(o) R 

1 
WN R ( WO) J”(Q) B 

1.0 

a.5 

K 
-I- 

1;:; 
-1.0 
-0.5 
-0.2 
-0.1 

iI 

Z:f 
1.0 
2.0 
3.0 

-5.0 

1::; 
-0.5 
-0.2 
-0.1 

i.1 

;:: 
1.0 
2.0 
3.0 

53595395 
3.5266402 
1~8891 
1.5417 
1.3511 
I.2910 
1.2326 
1.1760 
I.1214 
0.9692 
0.7566 
0.47581055 
0.32945314 

5.2304013 
3.3458260 
1.6241995 
I.2540 
I.0521 
0.9888 
0.9277 
0.8689 
0.8 126 
0.6594 
0.4604 
0.24978729 
0.16666654 

0 -5.0 
-3.0 
-1-o 
-0.5 
-0.2 
-0.1 

0 

t: 

ES 
O-825 
0.85 
0.875 

5.0942987 
3.145101 
1-283634 
0.8579 
0.6190 
0.5432 
0.46960002 
0.3Cj859059 
0 3305 
0.1485 
3.401 x lo-” 
I.0428078 x lo-’ 
4.4310057 x10-s 
6.793121 x 1O-5 

-0~009115 0.75 0.0 

-0.050178 0.5 0.0 

- 0~100000 
ii299685 

0.31926989 
0.0 

-0.162793 

_ - 

- _ 

-- 

-- 

-1.0 
-0.5 
-0.2 
-0.1 

Z.1 

I.1424 
0.6734 
0.3898 
0.2908 
0.1832 
0.0 

-0.198838 0 0.0 
_ 

-0~200000 -3.0 3.0576278 
- 1.0 1’ 1066908 
-0.5 0.62291361 
-0.2 0.3 1759557 
-0.1 0.20066407 
-0aO309208 0.0 

-0.237842 -0.1 0.0 

-0.422021 -0.5 

--0_5ooooo -0.64596487 
.- 

0.0 

0.0 

-0.712061 

-- 1aOOOOO 

-1.0 

.-1.4142136 

-0.93291597 - 0.8048 
-0.6652 -0-85066801 

- 0.5293 
-0.3243 
-0.1480 
- 0.07746 

:::8503 
0,1784 
0.5159 
1.3218 
4.2033536 
9.1059991 

1 0.2926 -0.3418 
0.2554 -0.1957 
0.2337 -8.557 x lo-% 
0.2266 -4.413 x 10-p 
0.2195 0.0 
0.2125 4,706 x lo-% 
0.2055 
0.1850 
O- I525 
9.5358 x lo-’ 
5.25 x 10-l 

9.732 x IO-! 
0.2702 
0.6559 
2.0974 
5.71 

-______ 
-0.8051 
~ O-6665 
-0.3454 
-0.1992 
- 8.763 x tom’ 
-4.531 x IO-’ 

1.1291 
0.7716 
04423 
0.3672 
0.324 I 
0.3101 
0.2963 
0.2828 
0.2694 
0.2307 
0.1718 
8.0111 x lo-’ 
2.79 x IO-p 

2.6195 
1.6753 
0.8017 
oaN4 
0~5008 
0.4666 
0.4333 
0.40 1 I 
0.3698 

-0.8857 
-0.7776 
- 0.4522 

O-2723 
--o-1234 

6.449 x 10m” 
0.0 
7.073 x 10-Z 
0.1485 

KE: 
4.993 1 
2.15 x lo1 

PO.95594959 
PO-89663957 
-0.61568791 
-0.3987 
-0.1901 
-0~1011 

0.0 
0.1151 
0.2461 
0.7583 
2.1719 
8@368 125 
1~8000014 x 10 

0.6211 
0.4501 
0.2895 
0.2510 
0.2282 
0.2207 
0.2132 
0.2057 
0.1982 

0.2828 
0.1639 
3.3053 x 10-5 
2.74 x 10-a 
--- 
2.6185 
1.6725 
0.7912 
0.5935 
0.4827 
0.4473 
0.4129 
a.3794 
0.3470 
0.2568 
0.1353 
1,772 x lOma 
6.53 x 10-I 

- 
-j- l-1285 

0.7700 
0.4369 
0.3595 
0.3147 
O-3000 

-0.8861 
-0.7792 
-0.4578 
-0.2781 
-0.1271 
6,666 x 
0.0 
7,373 x 
0.1556 
0.4629 
1.3062 
6,737 
3.96 x I 

10-s 

IO-! 
0.0 
4.862 x lo-’ 
0.1009 
0.2839 
0.7121 
2.538 
8-11 

0.2856 
0.2712 
0.2571 
0.2160 
0.1531 
5.937 x lo- 
1.51 x 10-p 

0.1761 
0.1404 
7.879 x 1O-p 
3.70 x 10-s 0’ 

PO.98148937 
PO.95386444 
-0.7790383 
-0.5828 
-0.3231 
-0~1841 

0.0 
0~25088400 
@605l 
3.3672 
2.205 x 10’ 
7.9113332 x 10 
I.9183004 x 10 
I.2880677 x 10 

0.6206 -0.8057 
-0.6680 
-0.3514 
- 0.2060 
-9.239 x 
-4,822 x 

0.0 
5.308 x 
0.1121 
0.3470 

I.1279 -0.8866 
0.7681 -0-7811 

2.6174 
1.6691 
Lb7746 
0.5664 
CM.456 
D.4060 
3-3667 
3-3277 
3.2890 
3.1736 
7.347 x 10-1 
3.8540 x IO-’ 
2,451 x 10-p 
1,906 x lO-3 

0449 i 
0.2846 
0.2427 
0.2165 
0.2074 
0.1980 
0.1884 
0.1783 
0.1441 
0.1032 
8 1705 : 
6.991 x 
3.630 x 

0.4282 -0.4671 
3.3452 - 0.2896 
Ct.2948 -0.1357 
3.2777 ~ 7.202 x IOmp 
3.2604 0.0 

;;I’ 1 

10-e 3.2427 8.241 x lo-% 
3.2246 @I781 
I.1658 06033 
I.1023 1.4662 
7.2758 x lOme 2.2678 
1,779 x lom* 2.942 
1,120x 10-8 8,254 

0.7270 
*loma 1.0097 

;;I” 1.216 
0 2.410 

00 7.316 x lO-p 2.0504 8.134 x lo-* 0.9220 

0~1155 0,433 1 

1,016 x 10ms 

I.1094 to 3.1232 0.8114 

0.0 
cm 

0.1904 0.0 
0.1361 0.2203 

I.2480 0.0 
1. I570 0.3819 

I.3445 
I.1698 

-0.8754 
~ 0.7425 
-0.5131 
-0.3438 

0.0 
co 

I.4238 -0.4719 
I.3365 -0.2972 
I.2794 ~ 0.1432 
I.2580 -7.751 x 10-1 
;::g 01058 0.0 

3.7665 
Lb5503 
3.4176 
3.3706 
3.3190 
3.2348 

0.2821 
0.2375 
0.2072 
0.1954 
0.1815 
0.1546 

-0.3545 
-0.2105 
-9,654 x 10mo 
-5,118 x lo-’ 

E70 x 1 O-2 

0.1634 0.0 al I.2048 0.0 3.2690 

-0~98115277 
-@90359475 
-0.80267952 
-0.62973171 
-0.49834532 
-* 

F7673 -0-7820 
I.4227 -0.4732 
I.3338 -0.2995 
I.2735 -0.1463 
I.2489 - 8.037 x lo-’ 
I.2053 ~ 3-013 x 10-J 

I .6675 
3-7643 
3.5453 
3.4069 
5.3542 
3.2701 

0.2814 -0-3554 

;:;g: -0-2119 -9,824 x 1O-z 
0, I897 --5.270 Y 10~” 
0.1637 ~ I.889 x lo-* 

-cc 0.1720 -5,813 x 10mp I.2205 -9.070 x IO-’ 5.3043 

0.2055 -0.2433 

0.2175 -0.2970 

3.2835 -0.3527 

I.3068 -0.4211 

3.4546 

3.5126 

--m 

--co 
__ 

I.3638 ~ 0.5497 3.6589 0.2464 -0.4059 
____- 

O~??sL? O~SO4R 

c p. 11s2 
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0.5 
R 

A L 07 A = 1.0 
n’(o) R 1 W(0) R 

3.6098 -0.96958 
2.2672 - 0.92623 
I.0160 -0.6889 
0.7409 -0.4724 
0.5895 -0.2375 
0.5418 -0.1292 
0.4958 0.0 
0.4515 0~1550 
0.4090 0.3423 
0.2933 1.1932 
0.1456 4.8063 

5-0968 
3.1531 

;:;;:z 
0.7033 
0.6354 
0.5704 
0.5085 
0.4497 
0.2950 
0.1168 
55959 x 10-s 
3.88 x IO-” 

~--_- 
-0~98101 
-w95143 
- 0,7556 

A 
n’(O) 

-_ 
la0679 x 10’ 
6.1145 
2.3073 
1.4595 
lGO81 
0.87 16 
0.7435 
06249 
0.5163 
O-2580 
4.780 x 10-p 
I.1586 x iO_’ 
5.46 x 10-u 
-___ 
lm668 x 10’ 
6.1108 
2.2874 
1.4269 
0.9668 
0.8276 
0.6972 
0.5768 
0.4672 
0.2 125 
2.784 x lO-4 
1.112x IO-” 
I.93 x 10-L’ 

- 
-0.95438 
-0.8953 
- 0.6237 
-0.4109 
-0.1997 
-0.1072 

- 0.5425 
- o-2844 
-0.1574 

0.0 
0.1967 
o-4447 
I.6951 
8.5649 
3.5741 x lo* 
7.73 2: IO’ 

z247 
0.2704 
0.8839 
3.0512 
3.0254 x 10’ 
5.47 x IO’ 

1,6658 x 10-a 8.4045 x lOI 
5.15 x 10-a 4.08 x 1 OS 

-0.96988 5TB56 
- 0.92759 3.1494 
-0.6978 1.3078 
- 0.4846 0.8986 
~ 0.2470 0.6752 
-0.1352 0.6056 

0.0 0.5389 
0.1648 0.4754 
0.3675 0.4153 
1.3347 0.2583 
6.0959 8.595 x lOma 
1.961 x lOa 1.703 x lo-’ 
3.00 x 10’ 2.28 x 10 ma 

m-O.98124 
-. 0.95255 
- 0.7646 
-0.5564 
- 0.2962 
-0.1651 

0.0 

3.6087 
2.2639 
1.0031 

-0.95475 
-0.8969 
- 0.6320 
-0.4212 
- 0.2072 
-0.1118 

0.0 
0.13t8 
0.2882 
0.9735 
3.6947 
5,643 x 10’ 

0.7223 
0.5669 
0.5179 
0.4705 
0.4248 
0.3810 
0.2622 
0.1148 
7.140 x 10-J 
7GO x 10-S 

0.2103 
0.4816 
1.9357 
1.163 r 10’ 
1,174x 103 
1.32 x IO6 2.30.x IO3 

-0.95514 
-0.89871 
-0.6455 
-04414 
-0.2244 
-0.1232 

0.0 

3.6075 
2- 2600 
0.9829 
0.6890 
0.5213 
0.467 I 
0.4139 
0.3618 

E: 
5,493 x 10-2 
2.3364 x IOmp 
1.269 x lo-’ 
6,716 x IO-” 

-0.97021 
~ 0.92921 
-0.7122 
-0-5080 
-0.2686 
-0.1499 

0.0 
0.1935 
0.4505 
2.1137 
9.5575 
2,4718x 10’ 

5.0943 
3.1451 

-0.98149 
- 0.95386 
-0.7790 
---0.5829 
-0.3231 
-0.1841 

0.0 
O-2509 
0.065 1 
3.3672 
2.205 x IO’ 
7.911 x 10’ 
1.918 x 104 
1.288 x IO4 

1.00656 x 10’ 
6.1064 
2.2568 
1.3705 
0.8860 
0.7373 
D.5972 
0.4674 
5.3497 
w97 x 10-p 
5,708 x lo-’ 
5.571 x lo-” 
1-015x 10-4 
2,402 x lO-8 

1.2836 
0.8579 
0.6190 
0.5432 
0.4696 
0.3986 
O-3305 
0.1485 
3,401 x lOmZ 
1.0428 x lOma 
4,431 x 10-a 
6,793 x lo-‘) 

0.1526 
0.3460 
1.4403 , 
5.1040 
PO703 x 101 
1.734 x 10’ 
1.505 x lo* I ’ 

-1: 

1: 1,160x 10-p 6.464 x IO’ 7.090 x IO-’ 9.3380 

2.2851 

2,498 x IO-’ 2,102 x 10’ 

9,459 x 10-e 3.7001 7.340 x IO-4 6.8118 _- 
I 

1.742 x IO-” 

00 0.3870 0.0 
0.8825 0.1665 I.2600 

0.4368 0.0 
0.1561 l-9194 

I.5504 
I.1127 
-- 
2.2425 
1.3382 
9.8267 
3.6620 
J 4968 
3.2788 

I 
-- 

I.2720 -0-7861 - 0.6523 

:;:;;;: 
-0.1349 

0.0 
0.2130 

0.0 

0.973 1 --0.7193 
0.6693 --0.5230 

E:: 
0:3561 

-0.2874 -0.1651 
0.0 

c.2500 0.2800 
-- 

0.2956 0.0 

0.8339 -ii5996 
0.5772 -0.3465 
0.4905 - 0.2039 
0.3993 0.0 
0.2638 0.3790 - 
0.3258 0.0 3.3915 

_ 
~ 0.8996 2.2582 -0.92995 
- 0.6542 0.9705 -0.7213 
- 04584 0.6633 -0.5277 
- 0.2458 0.4740 -0.2953 
-0.1412 0,404 1 -0.1732 
- 5.725 x lo-’ 0.2970 --7.287 x lO-3 

3.1431 --0.95446 
I .2690 -0-7880 
0.8267 -0.6048 
0.5614 -0.3563 
0.4663 -0.2145 
0.3278 -9,433 x lo- 

5.1045 
2.2387 
1.3284 
3.8042 
0.6273 
D.3952 

O-3924 -0.2549 I ’ D.5207 -0.1643 0.3434 -0.2038 

--o-5500 0.5533 - 0.6326 0.6945 -0.7199 1.1536 
___ --i-l_l 
0.8155 -0.7921 1.4131 

1,1246 -0.8892 
I- 
1 2.0733 

0.6358 --0.71 l? 

0.8456 - 0.8279 

-0.6301 

-0.7588 



= 2.0 
R ( fl'(o) 

A = 5.0 n 2 10.0 
R fl'W R 

-~- 
- 0.99325 
-0.98127 
-@8668 
-OS352 
- 0.3968 
- 0.2295 

o-o 

2.5035 x 10’ - 0.99860 
I.5062 x 10’ -0.99586 

5aO19 x IO’ -0.999613 
3.00350 x IO1 -0.998835 
1.0138 x 10’ -0.98630 
5.3446 -0.93553 
2.7370 -0.7307 
I.9869 -0.5033 
1.3373 0.0 

5.2236 -0.95720 
2.9331 - 0.8523 
I.7171 -0~5824 
I.3623 -0.3670 
I X1428 0.0 

0.3200 0.7652 0.6534 
0.774-J 0.5334 1.8749 
3.8763 0.1228 2,035 x 10’ 
4.184 x 10’ 2.08 x lO-a 2.41 x lO3 
3.4525 x 10’ 5.671 x 10-l I.763 x 10’” 
1-10x 10’ 8.43 x IO-*’ 1.78 x lOaL 

- 0.99863 
- 0.99603 
--0.96058 
-0.8651 
-’ 0.6045 
-0.3865 

0.0 
0.7235 
2.1623 
2.945 x IO1 
8.613 x IO” 
5.90 x 10’0 
2.31 x lot1 

0.8173 i .i236 
0.4412 4.5334 
2,704x l0-e 1.849 x 10e 
7.42 x IO-” 1.35 x 106 
5.24 x lo-” 3.82 x 1019 
1.14x lo-‘” 2.62 x lo&’ 

5Nl189 x 10’ - 0.999622 
3.00334 x 101 -0.998890 
1.0131 x 10’ - 0.98706 
5.3013 -0.94316 
2.6578 - 0.7525 
I.8951 - 0.5277 
I ,238O o-o 
3.7201 l-3887 
0.3600 5.5554 
1.376 x lO-2 3.634 x lo2 
6.02 x lo-’ 1-663x 10’ 
4.8 x lOm= 4-2 x lop 
6.9 x 1O-s5 4.3 x lo”3 

0.93337 2.5034 x 1 OL 
-0.98187 I.5060 x 10’ 
- 0.8744 5.2052 
- 0.7008 2.8900 
-0.4137 I.6542 
-0.2417 I.2935 

0.0 0.9699 
0.3467 0.6911 
0.856 1 0.4625 
4.7049 8,489 x 10mp 
7,184 x lOI 5,805 x IO-’ 
3,597 x 106 1.70 x 10m” 
3.1 I x 10” 6.5 x lo-*’ 

PO.99348 
PO.98257 
PO.8862 
- 0.7?96 
-0.4515 
-0-2713 

0.0 
0.4279 
I.1440 
f.099 x 10’ 

’ 2.628 x 10’ 
2.962 x 10” 
I.675 x 10’ 
7,287 x 10’ 

2.5034 x 10’ 
I.5057 x 10’ 
5.1747 
2.8186 
1.5344 
l-i552 
0.8156 
0.527 1 
0.3015 
1.467 x lo-* 
1.52 x lO-6 
4.46 x 10mR 
6.31 x lo-‘” 
5.41 x lo-‘8 

- 0.99866 
-0.99623 
- 0.96624 
PO.8870 
-0.6517 
-0.4328 

0.0 
0.9486 
3.3168 
1.704x lop 
2.47 x lo6 
9.24 x 10’ 
6.74 x lo8 
8.08 x 10’8 

5+)0185x IO’ -0.99963 1 
3.00315 x IO’ -0.998951 
1.01080 x 10’ - 0.98931 
5.2329 -0.95549 
2.5108 - 0.7965 
1.7134 -0.5836 
I.0297 0.0 
0.5105 I .9588 
0.1905 1.050 x 101 
4.88 x lo-’ I.025 x 10’ 
4.9 x lo-‘” 1.5 x 10’0 
4.2 x IO-” 1.9 x 10’5 
8.4 x lO-‘8 1.01 x 10’0 
6.2 x lo-= 1.4 x 103’ 

2,116~ 10’ 8445 x IO-’ 4.441 x 10’ 1.546 x 10mL( 4,852 x 10’” 

1.906 x 10-O 2.623 x 106 3647 x 101 8.930 x lo-’ 2,799 x 103 

O-0 0.7436 0.0 0.9327 0.0 
5.3176 3.150x 10-p 4,756 x 10’ 2,734 x 10m3 1.096x lOa 

-0.8919 5.1609 -0.96882 
-0.7473 2.7795 -0.8994 
-0.4839 1.4482 -0.6905 
-0.3021 1+410 - 0.4803 

0.0 0,6611 0.0 
0.7172 0.2525 1.9799 

1.0098 x 10’ - 0.99026 
5.1986 -0.96179 
2.4082 -0.8305 
I.5619 - 0.6390 
0.8206 0.0 
0.1795 5.5718 

0.5905 0.0 il.0 0.4955 

-0.98289 1,50554x 
-0.8934 5.1575 
-0.7528 2.7678 
-0.4974 I.4157 
-0.3188 0.9882 
- 1,565 x IO-: 0.5044 

-0.3841 
-~ 

-0.8669 

-0.91426 

0.96466 

-oJx+l I I, 

0.0 

IO' -0.996321 
-0.96946 
-0.90323 
~ O-7064 
~ 0.5060 
- 3.065 x 

3dlO294 x IO1 - 0.999022 
1 a0954 x 10’ - 0.990547 
5.1880 -0.96376 
2.3699 -0.x439 
1.496 1 - 0.6684 
0.608 1 -5,085 x 10-Z 

0.8226 ~ 0.6078 1.2781 -0.7824 

2.5719 ~ 0.97206 5.0236 -~ 0,99530 

6.4755 ___~ -0-99756 3.2772 -- 0.98556 

5.0215 0.99571 I .0006 ‘1: 10’ .- 0.99936 

7 OR24 --I~~‘m4O 14145 /. IO’ -CT99977 *’ 
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m-j-1 v 

-1 2 ux (22) 

2, NAO - .YAO(NAO + NEO) .~__. 
CU CU(XA0 - XACO) 

= !!~!!i!! A[q ;t) (23) 

in which the black dots (‘) signify that these 
transfer coefficients are evaluated at the prevail- 
ing mass transfer rate. The table is set up to 
handle known or unknown mass transfer rates ; 
thus if K is known one interpolates as follows: 

Y’(O) =.f”‘(O, B, K) (24) 

n’(O) = n’(0, ,f3, K, A). (25) 

On the other hand, if K is unknown, one first 
finds K from Table 1 by means of one of the 
following tabulated functions : 

K = K(B, &) (26) 

01 

K = W, RT, AT) (27) 
01 

K = 6% RAB, AAB), (28) 

and then follows the procedure for known K. 
The quantities Re, RT, RBB are defined as follows 
(for a binary constant-property system with no 
dissipation or chemical reaction): 

R 

T 
= ~~o~~'p(To - T4 

40 
(30) 

Coc(XAo- -YAW) 
&B = -of-- 

do 

@A0 - X_4m) 
___ 

N40 + NBO 
(31) 

____ - XAo 
NAO 

The tabulated values of R were computed from 
the boundary-layer solutions as follows : 

RT = n’(o, fl, K, AT) 
(33) 

KAAB 

RAB = fl(o, B, K, hi) 
(34) 

and are constants over the mass-transfer surface. 
Thus the ratios NAO/NBO, NAo/qo, and NAoU/T~ 
are all constant with respect to X. This constancy 
results, of course, from the similarity properties 
of the profiles under the present boundary 
conditions. 

Physically, the R quantities are the ratios of 
the momentum, energy and material fluxes by 
bulk flow at the surface to the corresponding 
fluxes by molecular agitation. These flux ratios 
occur prominently in many physical applications 
[6, 10, 12, 14, 17, 181. It is clear from equations 
[26-281 that, for given geometry and physical 
properties, specification of any one of the four 
quantities K, Rw,, RT, RUB determines all of them; 
any problem of this type can be solved directly 
from Table 1. 

At high mass transfer rates toward the wall, 
the results in Table 1 converge toward the follow- 
ing asymptotes : 

lim f “(0) --f -- K, 
K-t--a, 

lim n’(0) + - KA (35, 36) 
K--t-m 

lim Ru+- I, 
K-t-cc 

lim RT,RAB+- 1. (37, 38) 
K--t-a, 

It should be noted that in this region the signi- 
ficant part of the tabulated quantities is their 
deviation from these asymptotes. Thus, if one 
inadvertently rounded off R to -1.0 the pre- 
dicted mass transfer rate would be infinite ! 

In the present calculations the quantities 
II’(O) and RT or RAB always lie above the 
asymptotes -KA and -1, respectively. These 
conditions hold outside the region of reverse 
flow (see Fig. 2). The quantitiesf”(0) and R, lie 
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I / I 
I? 3.2 0.5 lb3 20 5.0 :, 3 

Rti 

FIG. 3(a). Temperature or concentration gradients 
at the wall for XI = 0.1. 

above their as~ptot~s if /I is positive, but for 
negative p they may he on either side, as can be 
seen from the behavior near the separation 
region. 

Some sample plots of ~‘(O> versus R i_ 1 are 
given in Figs. 3(a), 3(b), and 3(c), to illustrate 
the behavior of the transfer caefficients. Clearly, 
mass transfer into the fluid reduces the transfer 
coefficients, whereas mass transfer out of the 
fluid increases the transfer coefficients. The 
dependence of Ii’??) on the flow geometry is 
greatest near the separation limit. 

Some ad~t~onal boundary-Iayer parameters 
are given in Table 2, for use in the asymptotic 
calculations that follow. The dimensiot~less 
parameters D, and D, are defined by the equa- 
tion 

which describes the influence of the momentum 
boundary layer on the potential flow. The para- 
meter D, has the further significance that compared with inviscid flow without mass trans- 

fer. Also included in Table 2, for all velocity 
profiles with inject& (K ‘_ 01, are the position 
71,1 at which. .f vanishes, and the coefficients 
needed to expand fz .f dg in powers of p - 7771z. 

in which 8, is the distance the ~OtentiaI-~o~y The bou~ldary-layer results for m5mentLlm 

1 I I . 

i.. 0.2 0 5 3 2.c f J 

R+i 

FIG. 3(b). Temperature or concentration gradients 
at the wdl for il =. 1.0. 

I t 
A-. 

01 o.:I 0 r ;.g 2.0 r,. 

h7+i 

FIG. 3(c). Temperature or concentration gradients 
at the ~11 for J -. 10. 

streamfines are displaced in the y-direction as transfer should be applicable for X,/S* greater 
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than about 10. The displacement thickness 6* (/lfg”)1/3 
can be computed from the quantity D* in Table 
2. For heat transfer or diffusion, the same cri- 

mF =[exp [K,n+3]d,,* 

terion may be used for .4 greater than about 
unity, The region of validity for the solutions 

+&1/3G -- 

s 

exp 
[ 
I&W - - 1y3 

I 
dw 

for -1 4 1 is discussed in Section 4(c). 

4. ASYMPTOTIC SOLUTIONS FOR 
EfEAT TRANSFER AND DIFFUSION 

+ A-2i3Gi/:$!feq) brnw _ /~~J],-J~~ 

For calculations outside the range of Table 1, 
53 

and for some regions within it, the asymptotic 
+_44'3G 4 

s 
_ !!- 

0 
12Lexp bml,l -. ksr3] dwy 

solutions given here are useful. New results are 
O3 given for four regions, based on four different + @G,Z 

methods of approximating the function pfdq. s 
-&exp ~~~~~-~ll.~] dw 

For brevity we consider only the evaluation of 
D’(O) from equation (20), and do not discuss the 
complete profiles. 

or + A-’ G,G, o 2m W* exp kWw--- i+v3] dw 

4(a) Non-separatedflows with large A andjnite R + (1-l G, 
If the thermal or diffusional boundary layer is s 

m _ 7!; 1 
exp 

[ 
&w - - 1v3 

0 6 1 d,v 

thin enough, the Maclaurin expansion off may + . . . (44) 
be used in equation (20). This gives 

Abbreviating the integrals and making use of 
1 cc 

-=I 
s i nlco, (J 

exp L&j - i 7j3 _4&” 
equations (22) and (23), this becomes 

R 

- 4 q4Afo”’ - & q5 AX’ 

(AX’P3 r I --f 
KOO LqO) O 

1 
+ A-X’3 G I 33 

- m q"Afov - . . . d7. (41) 1 + A-2’9 Pi133 + G4141 

For non-separated flows the transformation + 4-l [G:lsas + G3GJ34 + GJsl 
w =: -q(&,,“)1/3 is useful; this gives 

$- . . , (45) 
(nf;")li3 to 

1 i 

1 
L_--_ 

n’(o) 
exp Kdc - - w3 

6 

The seven integrals, 1, through I,, are functions. 
0 only of k-, and are given numerically in Table 3. 

- & 11-113 G,%,." _ +. n-Z/'3 G,,,S 
To use equation (45), one first specifies ,8 and 

K and finds &” z,r’(O) from Table 1 or other 

- k. A-’ G5w6 - . . . 
I 

published lists 17, 1 I, 133. The desired higher 
d,,,. (42) derivatives off are then found from equation 

(13) and its derivatives: 
in which the following dimensionless quantities 
have been introduced : 

AK fo”’ 
K-/. = ~~~,,jli3 , G, =fo”4/“, 

f,“’ z Kf,” - /j 

foiy = Kf,“’ (461 

f,’ = Kfb” + (2/3 - l)(f,“)“. 

(43) Equation (45) may then be solved for either- 
n’(0) or R. 

Now the integrand in equation (42) may be equation (45) converges asymptoticalIy with 
partially expanded and integrated term by term increasing ~1, in non-separated flow, if Km is 
to give the desired asymptotic series: maintained constant or if K is maintained at any 
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Table 2. Wocity-profile mwtants for use in asyv,uptotic solutions 

1.0 

0.5 

0.0 

--.’ 00091 I5 

0~050178 

0.1 

0162793 

-- 5.0 0.03 189 4.8189 0.181 I 
3.0 0.06798 2.7329 0.267 I 

-~ I.0 0.1894 0.5407 0.4593 
~~~ 0,s 0.2583 0.04233 0.5423 
- 0.2 0.3143 0.4026 0.6026 
- 0.1 0.3360 0.5247 0.6247 

0 0.368 I 0.6500 0~6500 
0.1 0.3879 0.7729 0.6729 
0.2 0.4160 0.8985 0.6985 
0.5 0.5800 I.2981 0,798 I 
I.0 0.7234 I .9450 0.9450 
2-o I.4306 3.3616 I.3616 
3.0 2.6015 4.8608 I.8608 

-~~ 0.02868 
- 0.08449 
~ 0.3695 
-~ I.1974 

~ 4.2300 
~ 9,219 

- 
0.4302 
0.5642 
0.7546 
0.8786 
0.9542 
0.9760 

-- 5.0 0.03362 -- 4.8141 0. I859 
3.0 0.0740 I ~~ 2.7183 0.2817 

-- r-0 0.2412 0.4768 0.5232 
-~ 0.5 0,351 I 0.1413 0.6413 
~~ 0.2 0,4480 0.5328 0.7328 

O-l 0.4884 0.6677 0.7677 
0 0.5327 0.8048 O-8018 
0.1 0.581 I 0.9443 0.8443 
0.2 0.6359 1.0868 0.8868 
0.5 0.8365 1.5309 I-0309 
I.0 I.3377 2.3340 I.3340 
2.0 3.289 I 4.1542 2.1542 
3.0 6.4878 6.0834 3.0834 

- 0.03298 0.3822 
0.09746 0.5059 

--- 0.4318 0.6895 
-- I.445 0.8151 
- 5.388 0.9020 

-- 12.029 0.9361 

5.0 
~- 3.0 

I.0 
- 0.5 

0.2 
~~. 0.1 

0 

0.1 

0.2 
0.5 
0.75 
0,825 
0.85 
0.875 

0.03558 ~~ 4.8087 0.1913 
0.08463 - 2.7004 0.2996 
0.3385 ~~ 0.3691 0.6309 
0.5659 0.3398 0.8398 
0.8205 0.8349 l-0349 
0.9419 I.0191 1~1191 
I.0914 1.2168 I.2168 
I.2785 1.4314 l-3314 
1.5177 I.6681 I ,468 I 
2.8741 2.6118 2.11 I8 
7.0370 4.2377 3-4877 

12.1844 5.5311 4.7061 
17.0158 6.4778 5.6278 
54.5 507 Il.1975 10.3225 

- 
~- 0.04684 
- 0.1430 
~~ 0.7523 

2.138 
- 3.305 
~- 4.157 
- 8.333 

0.2877 
0.3852 
0.5268 
0.5776 
0.5842 
0.5860 
0.5873 

0.75 13.2346 5.6932 4,9432 3,1739 0.5662 

0.5 6.5593 3,902 1 3.4021 I 3024 0.4839 

0 I.4558 I .4427 I ,4427 
O-299685 4.724 1 3.1538 2.8541 0.5613 

..- - 

0.3753 0.3081 

..~ 1.0 0.3928 - 0.3135 O-6865 
0.5 0.7246 0.4693 0.9693 
0.2 1.1963 I .093 I 1.2931 
O-l I ,4874 I .3673 1.4673 
0 1.9628 1.7252 1~7252 
0.1 3.6835 2.5975 2.4975 

- 

- 
0.1148 0. I975 

- 
- 

- 
- 

0.7983 
0.6315 
0.3682 
0.1889 
0.07247 
0.03567 

0.4369 
06478 
I.1477 
L .879 I 
3.3371 
4.8162 

.- 
- 

- -. 

0.6579 0~5003 
0.546 1 0.7422 
0.3610 1.3231 
0.2220 ‘,ZI.‘X 
0.1197 4.0888 
o-02300 604YY 

- 

- 
- 
- 

0.4177 
0.3813 
0.3151 
0.2884 
0.284 I 
0.283 I 
0.2824 

_- 

O-2896 

0.3065 

0~7009 
1.0650 
2.1734 
3.8526 
5.1539 
6.1025 

IO.8235 

5.2Y-14 

3,394Y 

- 
- 
- 

0.2586 

2.4152. 

~_ 
I.5277 
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Tz&= 2.--cortrinwd 
I_I ~___~ __-----~~-.. -...__. ---- 

B K &l D P= I&--k- F G N %i 

- 0.198838 

- 0.2 

- O-237842 

‘I’ O-42202 1 

- 0.5 

-- 0*712061 

-- 1.0 
-_-_r_- .._. . 

0 3.3113 

- 3.0 0~08911 - 2.6919 
- l*O OdO87 - 0.2982 
-- 0.5 0.7784 0.5102 
~ 0.2 3.3636 1.1981 
- O-1 t*7959 1.5427 
- 0*00309208 3.3002 2.3518 

~- 0.1 3*0033 2.1387 

~ CM?4596487 l-9585 

-- I.0 ‘t -5763 

- 1.4142136 l-2692 O-OOOO 

2-3588 2,3588 - - 

l-3796 

I.3351 

0.5867 l-5867 - - - - 

negative value. That is, the error in the predic- 
tion of n’(O) or R, based on the first 71 terms of 
the series, vanishes as A -+ cc; for any n > 1. 
The asymptote for A --f CO with co~sfant positire 
X (so that K, a + a> Is given in Section 4(b). 

Several previously known solutions are in- 
cluded in equation (45), Thus, when E;j, = 0, 
equation (45) yields Merk’s asymptotic series 
[19] for heat transfer (or diffusion) in non- 
separated flow. For a second example, when 
K, is finite and A is large, equation (45) simpli- 
fies as follows: 

asA+-co 
R + KJ, (47aJ 

at constant I&, 

and by inversion of this relation, 

at constant R, KX -+ a function of R. (47bl 

This asymptotic function, independent of p for 
non-separated flows, is given in Fig, 4 and in 
Table 3; it includes the earlier solution of 
Stewart and associates 117, 12, 141, and an 
equivalent solution by Merk [IS], for flat-plate 
flow with A --f cr. Finally, in the limit as ICoo + 0, 
-equation f47a) becomes equivalent to Lighthill’s 
solution [ZO] for heat transfer from an isothermal 
wedge : 

O-3081 - - - - 

0.7018 - - - - 

1~0102 - - - - 

l-3981 - - - - 

1.6427 - - - 

2.3549 - - - - 

2.2387 - - - - 

1.8796 - - - - 

1*7811 - - - - 

I-4142 - - - - 

as A+ co 

R -+ 16227 K, (48a) 

and K, -+ 0, 

Or 

(48bI 

These results are, of course, valid for diffusion as 
Wdl. 

Equation (45) has been tested against most of 
the exact solutions in Table 1, and a sample of 
the results is shown in Table 4. Results are also 
given for the method of Spalding and Evans [9], 
which was derived by integrating equations (20) 
with truncated parabolic velocity profiles. The 

Frc. 4. Asymptotic solution for the heat and mass 
fluxes according fo equations (6Oa, b). 
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Per cent error in predicted n’(O) at given K 

equation equation equation equation Method 
(4% (45) (4% (451 

K A R 1 term 2 terms 4 terms 7 terms 

1.0 

0.0 

- Q-2 

- 0.2 1-O - 0.2844 13.67 2.72 - 0.35 - 0.25 - 3.24 1+25 
10.0 - 0.7307 2.66 O-29 0.06 0.09 - 0.09 2.37 

0.0 l+O O*OOOD 15.84 3.82 - 0.13 - 0.23 - 2.8s 1.00 
1030 0.0000 6.45 1.02 0.12 0.11 - 0.20 1.00 

0.2 1.0 04447 18.42 5.21 0.19 - 0.17 - 2.11 O-80 
10.0 4.5334 15.84 3.46 0.44 0.06 - 0.27 0.42 

- 0.2 150 
10.0 

0.0 i*o 
l@O 

0.2 1.0 
10~0 

- 0.2 1-O - 0.3563 - 3.52 3*71 0.80 0.08 2.19 1.51 
lO*O - 0.8439 - 0.84 0014 0.03 0.00 0.08 4.32 

- 041 l*O -- 0.2145 - 9.98 11.72 - 5.83 10.04 2.54 1.26 
10.0 - 0.6484 - 3.53 l*Ol - 0.23 0.16 0.19 2.23 

- 0.3231 
- o-7965 

oN@o 
wOOo 
OhO5 1 

10.50 

4.17 I,36 l-32 - 0.23 l-02 
O-57 O-08 @08 t3=03 0.06 
2.01 2-01 2*01 - O-21 2.01 
0.22 0.22 0.22 0.00 0.22 
2-81 3.45 3.14 - O-34 2.53 
6.28 1.72 1.18 - O*lO 0.76 

1.33 
3-03 
l*Oo 
1.00 
O-71 
030 

deviations listed are for predictions of II’(U) at 
the given /I, K and A; rnu~t~F~~~ation of these 
deviations by the numbers in the last column 
gives the deviations expected in predicting K at 
the given values of /3, R and A. 

The results with 7 terms of equation (45) are 
generally the best, and could be further improved 
by use of Euler’s transformation. The Spalding- 
Evans tables, and the two-term form of equation 
(45). both offer a good balance between simpli- 
city and accuracy ; hence it may prove useful to 
adapt one or both of these solutions to more 
general boundary-layer problems. 

Under these conditions the i&grand of 
equation (20) passes through a pronounced 
maximum at the position 71 = 7ra given in Table 
2. The series in equation (41) may converge 
rather slowly for q as large as Tm, and it is then 
preferable to integrate equation (20) using an 
expansion in powers of ; := 7 - vm: 

In the notation of Table 2, this becomes: 

Insertion of the first two terms of this expansion 
into equation (20), and integration from 
z = --- ,ijV& to z = CG, yields the asymptotic 
formula: 

This formula is compared with exact calculations 
in Table 5. The predicted values of U(O) are 
accurate within 2 per cent for K > 0.2, aud the 
corresponding accuracy for prediction of K at 
given R would be even better. Cunsidering the 
simplicity of the formula, the accuracy is very 
gratifying. 

In the limit as A --i CXX, at constant K,, equa- 
tion (51) yields an asymptotic expansion of 
equation (47a) for large Km: 
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Table 5. Comparison o~equarion (51) with exact solutions 
-.. _ _:I-_ .__ _.._ 

Values of II’(O) 

P K A 
--- 

1.0 3.0 10 
2.0 
I.0 
0.5 
0.2 
O,l 

Asymptotic 
equation (5 I) 

I-14 I: IO-40 

5.25 X 10-l” 
7-46 v lO-‘j 
2.73 ’ lo-’ 
4.34 /’ 10-l 
760 _I’ 10-l 

Exact, 
Table 1 

-_ 
I.14 ‘_ IO.-“” 
5.24 j\‘ ,()-I9 

7,42 10-G 
2,704 ‘,_ 10 -2 
4.412 :: 10-l 
8.173 ” IO-’ 

0.5 3.0 10 6.9 10.-“” 6.9 : 10-S” 
2.0 4.8 il‘ 10-Z” 4,g 10.‘21 

1.0 6.05 * IO-’ 6.02 .’ 10-T 
0.5 1.40 i IO-’ 1,376 IO-’ 
0.2 3.56 IO--’ 3.600 >’ IO- k 
0.1 6.71 :: 10 * 7,201 _ IO-” 

0.0 0.875 10 6.3 ,’ IO-“’ 6.2 \ ,0-x 
0.75 4.96 IO-lo 4.9 X 10 lo 
0.5 4.95 z, 10-a 4.88 ‘i 10-a 
0,2 I.91 : IO-’ I.905 ‘i 10-l 
0.1 4.80 *. 10-l 5,105 ‘~. 10-l 

‘This predicts R within 2-l per cent of the value 
in Table 3 for Km = 1, and the agreement be- 
comes exact as K, - m. It appears, then, that 
<equation (51) should predict I?@ K, 12) within 
.about 2 per cent for iI > 10 and R > 5, over 
the range of p studied here. The equation should 
predict K(j?, R, A) within about I per cent in the 
same region. 

4(c) ,4synptofes,for K + 0 
At large mass transfer rates toward the wall, 

the velocity profiles asymptotically approach the 
function 

,f’ z I - exq (53) 

,at all vafues of /3. This asymptote was pointed 
<out by Schlichting and Bussmann [I]. From this 
.one obtains the related asymptotes: 

,f’“tO, p, K) Y - K (54) 

Comparison with Tables 1 and 2 indicates that 
,equations (54) and (55) are reasonably accurate 
in the range K .< - 3. The values of n’(0) 
,derived here will have a comparable region of 
validity. 

Equations (20) and (55) then give: 

which holds for any value of A, since equation 
(55) holds asymptotically for the whole range of 
17. Notice that the integral is independent of ,6; 
this is in approximate agreement with Table I 
for K .< - 3. Expanding the term n eJfq,lIY” in 
series and integrating, one obtains finally: 

in which 

Equation (57) is convergent for ~1 < %: and 
K < 0. It is useful mainly for small .‘I or large 
negative K, where the convergence is rapid. 

A simpler expansion may be obtained by 
expanding the integrand of equation (56) in a 
different manner: 

-L *.. ] e.lav dn. 159) 

The result is 

6 +- 15/l -r 10~1~ 
K5/l”(2 L- 11)(1 T iI)3 . (60) 

6 -j- 15‘4 -k- 1 or12 _ _.-_____..____.. i 
K4D( 2 + il)( I + A)3 . . . . (61) 
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Equation (60) is an asymptotic expansion of the 
function in equation (57), and provides close 
bounds for that function as K-t - CO. 

Equations (60) and (61) are closely related to 
a solution given by Acrivos [21] for rapid mass 
transfer toward an arbitrary two-dimensional 
surface. For wedge flows his result becomes: 

n’(0) 2: A A 

(1 + N(1 .-.- I + 4 (62) 

which is obtainabie from equation (61) by 
expanding K in powers of (I + R) and retaining 
only the first term. In using this formula K 
should always be calculated to see if the assumed 
velocity profile in equation (53) is adequate. 

The comparisons in Table 6 show that equa- 
tions (57) and (60) are quite accurate in the 
region K < - 1 if the value of p lies well above 
the separation boundary in Fig. 2. For fl greater 
than about unity, however, better accuracy is 
obtained with two or more terms of equation 
(45), or with the method of Spalding and Evans 
[9]. Notice that the comparisons are based on 

prediction of K at a given value of R; such 
comparisons provide the best test of accuracy 
when R is near - 1. 

4(d) Asymptotes for small oalues of A 
If il is very small, as in heat flow through 

molten metals, then the exponential integrand 
in equation (20) changes slowly with 71 and the 
major contribution to the definite integral 
comes from outside the momentum boundary 
layer. Then, to a fair approximation, we can 
replace Jzfd? in equation (20) by its asymptotic, 
form for large 17 as given in equation (39). 
Integration of the resulting expression gives: 

The quantities D, and D, are functions of 6 and 
K (see Table 2). The approximation to J:,fds, 
used here is an upper bound over the whole 
range of 7, and consequently equation (63) gives. 
an upper bound for n’(0) for any value of A. 

In the region K < 0, the constants D, and 

Tnble 6. ~~}~~~uriso~ of e.ract md ~s~t~lptotic .~o~tft~ot~.~ when iy <- 0 
: ---7. -_.. 

Per cent errors in prediction of K at given R 
------- 

equation (56) equation (62) equation (45) Method of 
d K /I R 2 terms Reference [9] 

--__ - -- 
I.0 -1 0.1 - 0.3418 - 8.7(“, 

- 0.2 --I 0.1 - 0.3554 ~ 4.1(h) 
I.0 --I 1.0 - 0.7556 ~ 15.4C’l, 

- 0.2 -- I I.0 - 0.7880 _ 5.21”) 
1.0 --I 10.0 - 0.98630 - 19.71’) 

-- 0.2 -I IO.0 - 0~990547 ~ 2,8(S) 

I.0 -3 0.1 - 0~6652 _ 1.61”) 
-- 0.2 -3 0.1 -- 0.6688 _. 0.6(b) 

I.0 -3 1.0 - 0.95143 __ 4.4(h) 
- 0.2 -- 3 I.0 - 0.95446 _ ].ii”, 

1 .o -3 IO.0 - 0.998835 -- 7,3(“) 
- 0.2 -3 10.0 - 0.999022 I.?(“) 

I.0 -5 0.1 - 0.8048 _ 0.6(“, 
0.0 _. 5 0.1 - 0.8057 ~ 0.2(“, 
I.0 -5 1.0 - 0.98101 - 2.0&h, 
0.0 -5 I.0 -- 0.98149 0.7ka.‘l) 
I.0 -5 10.0 - 0.999613 1 3.3c”J 
0.0 - 5 IO.0 - 0.999631 - 1.0(a) 

=--. L-_ --_ 
(“) Integral calculated from asymptotic series, equation (601. 
it’) Integral calculated from convergent series, equation (57). 

27.0 6.9 
33.5 5.8 

8.1 0.8 
21.0 0.1 

- 19.7 2.9 
__ 2.9 - 0.2 

15-S -- 9.1 
16.8 - 9.1 

I.8 - 9.5 
5.4 - 8.8 

-- 7.0 - 06 
1.5 1.7 

9.8 - 38.6 
10.2 - 38.1 
0.7 - 21.7 
2.0 - 20.7 

-- 3.1 - @7 
- 0.8 - 0.4 

-~ ~ 

--I 15.4 
-- IO.8 

.._ 7.2 

- 3.6 
2.7 

- 0.3 

-- 21.1 
- 21.5 
- Il.6 
- ii.1 
- 06 

1.7 

- 23,2 
- 23~5 
-. 13.0 
-- 12.9 
-- 0.7 
- 0.4 
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Table 7. ~~777~ur~so~ of exact anti ~s~~~n~t~ti~ solutions for A < 1 
z7 -__I_ ~_~_I _ .-.- - .-.- ___-. --...- ___ -- ___-__ _ ..-.. mi 

Per cent error in prediction of 
F(O) at given K 

- 
___-__- 

13 K ‘I R equation 163) equation (64) [i :a^,,,!, .1 
_____- ..~_ - ~_._____-_._-.__- _.. -.. - 

1.0 .~. , .o 0.1 -- 03418 0.21 168 ,.34:‘” 

0.2 - 0.4522 0,59 3.16 I.52 
0.5 --- 0.6231 2.41 6.85 I ,9h 

0.0 0.1 0.0 0.41 3.23 I.00 
1.0 0.1 0.6559 0.72 6.30 0.70 

- 0.198838 0.0 0.1 0.0 5.45 24.30 I ,oo - 
(Separation) 

z_- .~_~~- __ ~_. __LmFmmm-- - 
ta) The exact solutions for these three conditions were taken from Sparrow and Gregg [23]. 
tb) Multiplication of the tabulated errors by the factors in this column gives the expected errors in prediciic~n of 

K at the given p, A and R. 

DI can be estimated from equation (55), and 
equation (63) then becomes equivalent to the 
first term of equation (57). It is also interesting 
to note that for K + 0, equation (63) bears a 
resembIance to equation (51). which holds for 
iI-+ cl_. 

A closely related solution for small n was 
given by Merk [19]. His result corresponds to 
equation (63) without the quantity D,: 

*'NJ e 
exp(- 4 D‘lfl) 

[1I+ erfD ;,v72jj. (64) 
1 

Merk’s solution did not include mass transfer, 
but is easily extended to mass-transfer problems 
by obtaining D, from Table 2 at the desired js 
and K. A series solution consistent with equa- 
tion (64) was given earlier by Morgan et al. [22], 
and was tested by Sparrow and Gregg [23] who 
gave exact calculations for the flat plate at small 
Prandtl numbers (see Table 7). 

In Table 7 equations (63) and (64) are com- 
pared with exact calculations. Equation (63) is 
clearly superior, especially for flows with separa- 
tion or injection. 

For rl less than about unity, longitudinal heat 
conduction or diffusion determines the region of x 
in which the boundary-layer solutions for II’(O) 
are useful. Estimation of a median Kl-profile 

thickness consistent with equation (63) or (64) 
gives the region of applicability as 

D, -+ \i[ t>; $- (0.5/11)] 

for laminar flow with 11 < 1. 

5. CONCLUSION 

The results in Sections 3 and 4 provide fairly 
complete information on momentum. heat and 
mass transfer rates in steady constant-property 
wedge flows. Naturally, modifications will be 
necessary to cope with problems involving more 
complicated geometries, variable properties, or 
multi~omponent diffusion. These modi~~ations 
will be treated in later papers in this series. 
Attention is also drawn to the works of Eckert 
and Livingood [6], Merk 1191, and Spalding and 
Evans 17, 8, 9, 181 on some of these matters. 
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R&sum&-Les solutions de couche fimite sent donnees pour I’Ccoufemem de melanges binaires g 
propri&t% constantes. sur des plans et des digdres avec transport de chafeur et de masse B la frontiere. 
Les solutions numCriques exactes sont don&es pour des nombres de Prandtf et de Schmidt de 0,f B 
f0. Les solutions asymptotiques sent don&es pour des nombres de Prandtf et de Schmidt hors de ce 

domainc ainsi que pour des coefficients kievis de transport de masse vers la surface. 

Zusammenfassung-Die Grenzschichtgfeichungen sind angegeben fiir die StrGmung binlrer Gemische 
konstanter Stoffeigenschaften iiber ebene Fllchen und Keife mit Warme- und Stoffhbergang durch die 
Grenzfflchen. Fiir Prandtf- und Schmidt-Zahfen von 0,l bis IO fiegcn exakte numerische Lasungen vor. 
i\symptotische LGsungen sind giiftig fiir Prandtf- und Schmidt-Zahfen ausserhalb dieses Bereichs und 

fiir grnsse Stoffiibergangsgeschwindigkeitcn. 


